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The PI index of phenylenes
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The Padmakar–Ivan (PI) index is a graph invariant defined as the summation of the
sums of neu(e|G) and nev(e|G) over all the edges e = uv of a connected graph G, i.e.,
PI(G) = ∑

e∈E(G)[neu(e|G) + nev(e|G)], where neu(e|G) is the number of edges of G
lying closer to u than to v and nev(e|G) is the number of edges of G lying closer to v

than to u. An efficient formula for calculating the PI index of phenylenes is given, and
a simple relation is established between the PI index of a phenylene and of the corre-
sponding hexagonal squeeze.
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1. Introduction

The structure of a molecule could be represented in a variety of ways. The
information on the chemical constitution of molecule is conventionally repre-
sented by a molecular graph. And graph theory was successfully provided the
chemist with a variety of very useful tools, namely, topological index. The first
reported use of a topological index in chemistry was by Wiener [1] in the study
of paraffin boiling points. Since then, in order to model various molecular prop-
erties, many topological indices have been designed [2]. Such a proliferation is
still going on and is becoming counter productive.

In 1990s, Gutman and coworkers [3,4] have introduced a generalization
of the Wiener index (W ) for cyclic graphs called Szeged index (Sz). The main
advantage of the Szeged index is that it is a modification of W ; otherwise, it
coincides with the Wiener index. In [5,6], another topological index was intro-
duced and it was named Padmakar–Ivan index, abbreviated as PI. This new
topological index, PI, does not coincide with the Wiener index. Deng [7] gave
a formula for calculating the PI index of catacondensed hexagonal systems and
the extremal catacondensed hexagonal systems with the minimum or maximum
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PI index. Ashrafi and Loghman [8] computed the PI index of zig–zag polyhex
nanotubes. Deng [9] computed the PI index of T U V C6[2p, q].

The primary aim of this article is to introduce the method for calculation
of PI index for phenylenes.

2. Phenylenes and their hexagonal squeezes

Phenylenes are a class of chemical compounds in which the carbon atoms
form 6- and 4-membered cycles. Each 4-membered cycle(=square) is adjacent to
two disjoint 6-membered cycles(=hexagons), and no two hexagons are adjacent.
Their respective molecular graphs are also referred to as phenylenes.

By eliminating, “squeezing out,” the squares from a phenylene, a
catacondensed hexagonal system (which may be jammed) is obtained, called the
hexagonal squeeze of the respective phenylene [10]. Clearly, there is a one-to-one
correspondence between a phenylene (PH) and its hexagonal squeeze (HS). Both
possess the same number (h) of hexagons. In addition, a PH with h hexagons
possesses h − 1 squares. The number of vertices of PH and HS are 6h and
4h + 2, respectively; The number of edges of PH and HS are 8h − 2 and 5h + 1,
respectively.

An example of PH and its HS is shown in figure 1.
For PHs and their HS, some results related to the mathematical proper-

ties of Wiener index, Randić index and the second-order Randić index have been
reported in the literature [10–12]. In the next section, we will give a formula for
calculating the PI index of PHs and establish a simple relation between the PI
index of a PH and of the corresponding HS.

3. The PI index of phenylenes

Let G be a connected and undirected graph without multiple edges or
loops. By V (G) and E(G) we denote the vertex and edge sets, respectively, of G.

If G ′ = (V ′, E ′) is a subgraph of G = (V, E) and contains all the edges of
G that join two vertices in V ′, i.e., E ′ is the set of edges between vertices of V ′,
then G ′ is an induced subgraph of G by V ′ and is denoted by G[V ′].

Let e = xy be an edge of G, X is the subset of vertices of V (G) which
are closer to x than y and Y is the subset of vertices which are closer to y than
x , i.e.,

X = {v|v ∈ V (G), dG(x, v) < dG(y, v)},
Y = {v|v ∈ V (G), dG(y, v) < dG(x, v)},
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Figure 1. A phenylene (PH) and its hexagonal squeeze (HS).

where dG(u, v) denotes the distance between vertices u and v of G. Let G[X ]
= (X, E1) and G[Y ] = (Y, E2),

n1(e) = |E1|, n2(e) = |E2|.

Here, n1(e) is the number of edges nearer to x than y and n2(e) is the number
of edges nearer to y than x .

Then the PI index of G is defined as

PI(G) =
∑

e∈E(G)

[n1(e) + n2(e)].

In all cases of cyclic graphs, there are edges equidistant to the both ends of the
edges. Such edges are not taken into account.

For calculating the PI index of a PH, we introduce some conceptions in a
PH analogously in a hexagonal system. The linear chain PH is a PH without
kinks (see figure 2), where the kinks are the branched or angularly connected
hexagons. A segment of a PH is a maximal linear chain in the PH, including
the kinks and/or terminal hexagons at its end. The number of hexagons in a seg-
ment S is called its length and is denoted by l(S). For any segment S of a PH,
2 � l(S) � h. Particularly, a PH is a full kink one if and only if the lengths of
its segment are all equal to 2.

A PH consists of a sequence of segments S1, S2, . . . , Sn, n � 1, with lengths
l(Si ) = li , i = 1, 2, . . . , n, where l1 + l2 + · · · + ln = h + n − 1 since two neigh-
boring segments have always one hexagon in common. Then the PI index of PH
may be calculated from these structural parameters.

Theorem 1. Let PH be a phenylene with h hexagons and consisting of n seg-
ments of lengths l1, l2, . . . , ln, n � 1. Then

PI(PH) = 64h2 − 44h + 4n + 4 − 4
n∑

i=1

l2
i .
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Figure 2. A linear chain phenylene, kinks, and segments of a phenylene.

Proof. From the definition of PI(PH) and figure 2, we observe that for any edge
e which the straight line Si cuts across, where the straight line Si passes through
the segment of length li . Such edges will be 2li in numbers and the contribution
of such edges to PI(PH) will be

n1(e) + n2(e) = (8h − 2) − 2li

i = 1, 2, . . . , n, where 8h − 2 is the number of edges in PH. And the other edges
will be (8h − 2) − 2(l1 + l2 + · · · + ln) = 6h − 2n in numbers. Each of them will
contribute

n1(e) + n2(e) = (8h − 2) − 2 = 8h − 4

to PI(PH). Therefore, the sum of the contributions of all the edges will give the
PI index for PH

PI(PH) =
n∑

i=1
2li (8h − 2 − 2li ) + (6h − 2n)(8h − 4)

= 64h2 − 44h + 4n + 4 − 4
n∑

i=1
l2
i .

Particularly, if n = 1 and l1 = h, then PH is the linear chain PH with h
hexagons.

Corollary 2 [5]. For the linear chain phenylene PH with h hexagons,

PI(PH) = 60h2 − 44h + 8.

If n = h − 1, l1 = l2 = · · · = ln = 2, then PH is a full kink phenylene.

Corollary 3. For a full kink phenylene PH with h hexagons,

PI(PH) = 64h2 − 56h + 16.
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4. Bounds for the PI indices of phenylenes

In this section, we give the bounds of the PI indices of phenylenes.

Theorem 4. For any phenylene PH with h hexagons,

60h2 − 44h + 8 � PI(PH) � 64h2 − 56h + 16

with the left (right) equality if and only if PH is a linear chain (a full kink)
phenylene.

Proof. (i) Let PH be a PH consisting of n segments of lengths l1, l2, . . . , ln,
where l1 + l2 + · · · + ln = h + n − 1 and li � 2, i = 1, 2, . . . , n. Then

PI(PH) = 64h2 − 44h + 4n + 4 − 4
n∑

i=1

l2
i

by theorem 1. From Jensen’s Inequality with f (x) = x2 (or Root Mean
Square–Arithmetic Mean Inequality), we have

l2
1 + l2

2 + · · · + l2
n

n
�

(
l1 + l2 + · · · + ln

n

)2

then

l2
1 + l2

2 + · · · + l2
n � 1

n
(h + n − 1)2 = n + (h − 1)2 1

n
+ 2(h − 1).

Let f (n) = n + (h − 1)2 1
n + 2(h − 1), 1 � n � h − 1, we have

f (n) � f (h − 1) = 4(h − 1)

since f ′(h − 1) = 0 and f ′′(h − 1) > 0. And

l2
1 + l2

2 + · · · + l2
n � 4(h − 1)

with the equality if and only if n = h − 1 and l1 = l2 = · · · = ln = 2. So,

PI(PH) = 64h2 − 44h + 4n + 4 − 4
n∑

i=1
l2
i

� 64h2 − 44h + 4n + 4 − 16(h − 1)

� 64h2 − 56h + 16 (since n � h − 1)

with the equality if and only if n = h − 1 and l1 = l2 = · · · = ln = 2, i.e., PH is
a full kink PH.
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(ii) For any positive real numbers x, y � 2, we have (x − 1)(y − 1) � 1, i.e.,
xy − (x + y) � 0. If n > 1, then

[l2
1 + l2

2 + · · · + l2
n] − [l2

1 + · · · + l2
n−2 + (ln−1 + ln − 1)2]

= 2(ln−1 + ln) − 2ln−1ln − 1 < 0

and
l2
1 + l2

2 + · · · + l2
n < l2

1 + · · · + l2
n−2 + (ln−1 + ln − 1)2

< l2
1 + · · · + l2

n−3 + (ln−2 + ln−1 + ln − 2)2

< · · ·
< (l1 + l2 + · · · + ln − n + 1)2 = h2.

PI(PH) = 64h2 − 44h + 4n + 4 − 4
n∑

i=1
l2
i

� 64h2 − 44h + 4n + 4 − 4h2 (since n � 1)

� 60h2 − 44h + 8

with the equality if and only if n = 1, i.e., PH is a linear chain PH.
This result shows that the linear chain PH is the unique PH with the min-

imum PI index, and the full kink PH are the PHs with the maximum PI index
among all the PHs.

5. A relation of the PI index between PH and HS

In the following, we establish a relation between the PI index of a PH and
of the corresponding HS.

Let G be a catacondensed hexagonal system with h hexagons and consist-
ing of n segments of lengths l1, l2, . . . , ln, n � 1, Deng [7] proved that

PI(G) = 25h2 + n − 1 −
n∑

i=1

l2
i .

For the HS of a PH, HS may be jammed (which possesses lagoons), it is easy to
see that the equation above also holds for HS.

Comparing with theorem 1, we have

Theorem 5. Let PH be a phenylene with h hexagons and HS its hexagonal
squeeze. Then

PI(PH) = 4PI(HS) − 36h2 − 44h + 8.
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